Abstract-We consider the downlink coordinated beamforming problem in a cellular network in which the base stations (BSs) are equipped with multiple antennas and each user is equipped with a single antenna. The BSs cooperate in sharing their local interference information, and they aim to maximize the sum-rate of the users in the network. A decentralized interference pricing beamforming (IPBF) algorithm is proposed to identify the coordinated beamformer, where a BS is penalized according to the interference it creates to its peers. We show that the decentralized pricing mechanism converges to an interference equilibrium, which is a KKT point of the sum-rate maximization problem. The proofs rely on the identification of rank-1 solutions of each BSs' interferencepenalized rate maximization problem. Numerical results show that the proposed iterative mechanism reduces significantly the exchanged information with respect to other state-of-the-art beamforming algorithms with very little sum-rate loss. The version of the algorithm that limits the coordination to a cluster of base stations (IPBF-L) is shown to have very small sum-rate loss with respect to the full coordinated algorithm with much less backhaul information exchange.Index Terms-Base station coordination, beamforming, interference equilibirum, multiple input-multiple output (MIMO), non-convex.