To develop a novel multi-contrast four-dimensional magnetic resonance imaging (MC-4D-MRI) technique that expands single image contrast 4D-MRI to a spectrum of native and synthetic image contrasts and to evaluate its feasibility in liver tumor patients.
Methods and materials:The MC-4D-MRI technique integrates multiparametric MRI fusion, 4D-MRI, and deformable image registration (DIR) techniques. The fusion technique consists of native MRI as input, image preprocessing, fusion algorithm, adaptation, and fused multi-contrast MRI as output. Four-dimensional deformation vector fields (4D-DVF) were generated from an original T2/T1-w 4D-MRI by deforming end-of -inhalation (EOI) to nine other phase volumes via DIR. The 4D-DVF were applied to multi-contrast MRI to generate a spectrum of 4D-MRI in different image contrasts. The MC-4D-MRI technique was evaluated in five liver tumor patients on tumor contrast-to-noise ratio (CNR), internal target volume (ITV) contouring consistency, diaphragm motion range, and tumor motion trajectory; and in digital anthropomorphic phantoms on 4D-DIR introduced errors in tumor motion range, centroid location, extent, and volume. Results: MC-4D-MRI consisting of 4D-MRIs in native image contrasts (T1-w, T2-w, and T2/T1-w) and synthetic image contrasts, such as tumor-enhanced contrast (TEC) were generated in five liver tumor patients. Patient tumor CNR increased from 2.6 ± 1.8 in the T2/T1-w MRI, to -4.4 ± 2.4, 6.6 ± 3.0, and 9.6 ± 3.9 in the T1-w, T2-w, and TEC MRI, respectively. Patient ITV interobserver mean Dice similarity coefficient (mDSC) increased from 0.65 ± 0.10 in the original T2/T1-w 4D-MRI, to 0.76 ± 0.14, 0.77 ± 0.12, and 0.86 ± 0.05 in the T1-w, T2-w, and TEC 4D-MRI, respectively. Patient diaphragm motion range absolute differences between the three new 4D-MRIs and original T2/T1-w 4D-MRI were 1.2 ± 1.3, 0.3 ± 0.7, and 0.5 ± 0.5 mm, respectively. Patient tumor displacement phase-averaged absolute differences between the three 4D-MRIs and the original 4D-MRI were 0.72 ± 0.33, 0.62 ± 0.54, and 0.74 ± 0.43 mm in the superior-inferior (SI) direction, and 0.59 ± 0.36, 0.51 ± 0.30, and 0.50 ± 0.24 mm in the anterior-posterior (AP) direction, respectively. In the digital phantoms, phase-averaged absolute tumor centroid shift caused by the 4D-DIR were at or below 0.5 mm in SI, AP, and left-right (LR) directions.
Conclusion:We developed an MC-4D-MRI technique capable of expanding single image contrast 4D-MRI along a new dimension of image contrast. Initial 7984