1991
DOI: 10.1016/0038-1101(91)90090-l
|View full text |Cite
|
Sign up to set email alerts
|

A problem-specific inverse method for two-dimensional doping profile determination from capacitance-voltage measurements

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

1992
1992
2018
2018

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 11 publications
(2 citation statements)
references
References 28 publications
0
2
0
Order By: Relevance
“…In addition, the different environments will affect the electric field distribution, resulting in difficulty in the calculation of the capacitance matrix, making the calculation difficult. Thus, the voltage solving method using the electromagnetic field inverse problem has some application limitations, as it is limited by the numerical calculation theory and method of the electromagnetic field, as well as the application conditions of the computers involved, and the D-dot sensor voltage measurement system is still challenged by voltage solving difficulties and poor accuracy [ 7 , 8 , 9 ]. To solve these problems, an integral algorithm is introduced into the D-dot sensor voltage measurement system.…”
Section: Introductionmentioning
confidence: 99%
“…In addition, the different environments will affect the electric field distribution, resulting in difficulty in the calculation of the capacitance matrix, making the calculation difficult. Thus, the voltage solving method using the electromagnetic field inverse problem has some application limitations, as it is limited by the numerical calculation theory and method of the electromagnetic field, as well as the application conditions of the computers involved, and the D-dot sensor voltage measurement system is still challenged by voltage solving difficulties and poor accuracy [ 7 , 8 , 9 ]. To solve these problems, an integral algorithm is introduced into the D-dot sensor voltage measurement system.…”
Section: Introductionmentioning
confidence: 99%
“…The most widely used technique in the semiconductor community is the so-called C-V technique, proposed initially by Kennedy, Murley and Kelinfelder in [36,37] and have been extensively studied since then [24,34,47,48,58,[61][62][63]66,67]. The underline mathematical model for the C-V technique is a one-dimensional drift-diffusion-Poisson system; see (6) below for a simplified multi-dimensional version.…”
Section: Introductionmentioning
confidence: 99%