The increasing flexible and wearable electronic technology, demands cost effective and flexible energy devices which are safe to human body. Hence the benign biodegradable materials are becoming important class of materials for wearable energy devices. Starch is one such potential host renewable polymer which is abundant in nature and economical. Being a food ingredient, it is safe for human body. Its properties depends upon the amylose and amylopectin content in it and hence two different starches, corn (~ 27% amylose) and arrowroot (~ 15% amylose) are modified by sodium salt (NaClO 4 ) and glutaraldehyde to develop flexible, transparent and free standing electrolyte membranes with high conductivity (> 10 -3 S/cm). They have wide electrochemical stability window (> 2 V reaching upto 3.5 V) and low ESR. The relaxation time is of the order of µs and the cyclic voltammetry has indicated EDLC type of charge storage. At low frequency, the values of C p /C s are approaching to 1, indicating that all the available charges are polarizable and contributing to charge storage. The resonance frequency and frequency (f −45°) at which phase angle is −45°, are in kHz frequency range, i.e. the working frequency range is quite high. Electrolytes having corn starch (i.e. greater amount of amylose) have better performance on every electrochemical figure of merit.