One becomes accustomed to repeated exposures, even for a novel event. In the present study, we investigated how predictability affects habituation to novelty by applying a mathematical model of arousal that we previously developed, and through the use of psychophysiological experiments to test the model’s prediction. We formalized habituation to novelty as a decrement in Kullback-Leibler divergence from Bayesian prior to posterior (i.e., information gain) representing arousal evoked from a novel event through Bayesian update. The model predicted an interaction effect between initial uncertainty and initial prediction error (i.e., predictability) on habituation to novelty: the greater the initial uncertainty, the faster the decrease in information gain (i.e., the sooner habituation occurs). This prediction was supported by experimental results using subjective reports of surprise and event-related potential (P300) evoked by visual-auditory incongruity. Our findings suggest that in highly uncertain situations, repeated exposure to stimuli can enhance habituation to novel stimuli.