DOI: 10.11606/t.45.2015.tde-02102015-102952
|View full text |Cite
|
Sign up to set email alerts
|

A propriedade de Borsuk-Ulam para funções entre superfícies

Abstract: No caso em que N = S 2 , para cada superfície M e involução τ : M → M , nós classicamos os elementos β ∈ [M ; S 2 ] que têm a propriedade de Borsuk-Ulam. Para fazer tal classicação, nós usamos a teoria de funções equivariantes e a teoria de grau de aplicações. Para classes de homotopia β ∈ [M ; RP 2 ], classicamos aquelas que se levantam para S 2. No nal, nós consideramos a propriedade de Borsuk-Ulam para ações livres de Z p , com p um inteiro primo positivo. Neste caso, mostramos que se M e N são superfícies … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 10 publications
0
1
0
Order By: Relevance
“…This work is a continuation of part of the Ph.D. thesis [7] of the third author who was supported by CNPq project nº 140836 and Capes/COFECUB project n o 12693/13-8. The first and second authors wish to thank the 'Réseau Franco-Brésilien en Mathématiques' for financial support during their respective visits to the Laboratoire de Mathématiques Nicolas Oresme UMR CNRS 6139, Université de Caen Normandie, from the 9 th to the 24 th of November 2019, and to the Instituto de Matemática e Estatística, Universidade de São Paulo, from the 17 th to the 31 th of August 2019.…”
Section: Acknowledgementsmentioning
confidence: 99%
“…This work is a continuation of part of the Ph.D. thesis [7] of the third author who was supported by CNPq project nº 140836 and Capes/COFECUB project n o 12693/13-8. The first and second authors wish to thank the 'Réseau Franco-Brésilien en Mathématiques' for financial support during their respective visits to the Laboratoire de Mathématiques Nicolas Oresme UMR CNRS 6139, Université de Caen Normandie, from the 9 th to the 24 th of November 2019, and to the Instituto de Matemática e Estatística, Universidade de São Paulo, from the 17 th to the 31 th of August 2019.…”
Section: Acknowledgementsmentioning
confidence: 99%