Disulfide bond (DSB) formation is catalyzed by disulfide bond proteins and is critical for the proper folding and functioning of secreted and membrane-associated bacterial proteins. Uropathogenic Escherichia coli (UPEC) strains possess two paralogous disulfide bond systems: the well-characterized DsbAB system and the recently described DsbLI system. In the DsbAB system, the highly oxidizing DsbA protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide and is in turn reoxidized by DsbB. DsbA has broad substrate specificity and reacts readily with reduced unfolded proteins entering the periplasm. The DsbLI system also comprises a functional redox pair; however, DsbL catalyzes the specific oxidative folding of the large periplasmic enzyme arylsulfate sulfotransferase (ASST). In this study, we characterized the DsbLI system of the prototypic UPEC strain CFT073 and examined the contributions of the DsbAB and DsbLI systems to the production of functional flagella as well as type 1 and P fimbriae. The DsbLI system was able to catalyze disulfide bond formation in several well-defined DsbA targets when provided in trans on a multicopy plasmid. In a mouse urinary tract infection model, the isogenic dsbAB deletion mutant of CFT073 was severely attenuated, while deletion of dsbLI or assT did not affect colonization.Disulfide bonds bridging cysteine pairs impart structural stability and protease resistance to secreted and membrane-associated proteins. Most organisms contain specific mechanisms for the formation of disulfide bonds in proteins, a process called oxidative protein folding. In bacteria, this folding process is catalyzed by the disulfide bond family of proteins (18,22). The best-characterized bacterial disulfide bond machinery is the Escherichia coli K-12 oxidative system, which consists of two enzymes, the periplasmic DsbA and the inner-membrane DsbB (25,35). DsbA is a monomeric protein comprising a thioredoxin (TRX) domain with an embedded helical insertion and a redox-active CPHC motif (34). This highly oxidizing protein introduces disulfide bonds into unfolded polypeptides by donating its redox-active disulfide (2, 4, 5), and as a result, the two cysteines contained in the CPHC catalytic motif become reduced. DsbB reoxidizes this cysteine pair and restores the oxidizing activity of DsbA, enabling it to assist the folding of a new substrate protein (21).The DsbAB oxidative protein folding system plays a welldocumented part in bacterial virulence. Several studies have demonstrated a direct role for both enzymes, particularly DsbA, in the biogenesis of virulence factors utilized by bacterial pathogens in various stages of the infection process (19). The protein forming the P-ring of E. coli flagella, FlgI, was one of the first DsbA substrates identified (10) and flagellum-mediated motility was subsequently demonstrated to require the presence of functional DsbA in several gram-negative pathogens, including Salmonella enterica (1), Proteus mirabilis (8), Erwinia carotovo...