In a recent report, it has been postulated that the ubiquitous RBM proteins might constitute a novel family of apoptosis modulators. We measured the expression of the X-chromosome RBM genes (RBMX, RBM3, and RBM10) in 122 breast cancers by means of differential RT-PCR. Using the same method, we also studied the expression of the apoptosis-related genes Bcl-2 and Bax. Markers of hormone dependence (estrogen and progesterone receptors), proliferation (Ki67 and DNA-ploidy), angiogenesis (VEGF and CD105), as well as oncogene (c-erb-B2), and tumor suppressor gene (p53) expression were also analyzed. The expression of all X-chromosome RBM genes was significantly associated with the expression of the proapoptotic Bax gene (RBMX, P=0.039; RBM3, P<0.001; RBM10 large variant, P<0.001; RBM10 small variant, P<0.001). Furthermore, the expression of both RBM10 variants was significantly associated with the expression of the VEGF gene (large variant, P=0.004; small variant, P=0.003). We also found an association of borderline significance (P=0.05) between the expression of RBM3, the large variant of RBM10 and wild-type p53. Expression of the small RBM10 variant, finally, was associated with high proliferation of the tumors (Ki67>or=20%; P=0.037). The expression of both RBM10 variants seems to be interdependent to a significant degree (r=0.26, P=0.006). From these results, it seems that the X-chromosome, through its RBM genes, plays a formerly unknown role in the regulation of programmed cell death (apoptosis) in breast cancer.
The nuclear pore complex protein Nup88 is overexpressed in tumor cells. Immunohistochemical studies have shown that this overexpression is linked to higher aggressiveness of colorectal carcinoma and to enhanced metastatic potential of melanoma cells. However, the antibodies so far developed against Nup88 have the drawback of recognizing a number of other, up to now unspecified antigens besides Nup88. For this reason, we devised the present study on Nup88 expression at the mRNA level. RNA was extracted from fresh tumor tissue corresponding to 122 breast cancer patients. Nup88 mRNA expression was measured by means of differential RT-PCR, standardizing against a constitutive internal control gene (-actin). The results were dichotomized into "high" and "low" expression levels, using the median value as cut-off. High Nup88 mRNA expression levels correlated significantly with ductal and tubular histology (p ؍ 0.012), histologic and nuclear grade 3 of tumors (p < 0.001), absence of hormone receptor expression (p < 0.001), expression of the c-erb-B2 oncogene (p < 0.001), expression of mutant p53 protein (p < 0.001), high proliferation (defined by Ki67 labeling index >20%, p < 0.001), DNA aneuploidy (p < 0.001) as well as the most important ominous clinical prognostic factor, axillary node invasion (p < 0.001). We also found an inverse correlation (p < 0.001) with expression of the H-MAM (mammaglobin) gene, a marker of low biologic and clinical aggressiveness of breast cancer. All of these factors, without exception, define a highly aggressive tumor phenotype. These findings appear to be specific to Nup88 and not to nuclear pore proteins in general. Indeed, analysis of Nup107 (which is a limiting component of the nuclear pore complex) under the same conditions in the same tumors did not yield comparable results.
Chromosome abnormalities in embryos obtained through in-vitro maturation (IVM) of oocytes from 11 oocyte donors were compared with embryos from women undergoing fluorescence in-situ hybridization (FISH) analysis for sex selection. Thirty-three oocytes had reached metaphase II stage at 28-30 h (65%) and 27 were successfully fertilized by intracytoplasmic sperm injection. Blastomere biopsy was performed in 20 embryos (74%). For five embryos, two blastomeres were analysed, three of which were mosaic. FISH study revealed aneuploidies of chromosomes 13, 15, 16, 18, 21, 22, X and Y in 12 embryos (60%) and euploidy in the remaining eight (40%). The percentage of aneuploidies in the control group was 33%. Differences between IVM and control embryos were not statistically significant. The high incidence of chromosome abnormalities in embryos resulting from the IVM protocol may account for the low implantation rates reported by others. Although a greater incidence of miscarriage or congenital abnormalities in babies born alive following IVM versus conventional IVF has not been observed in previous studies, preimplantation genetic aneuploidy screening or prenatal chromosome studies may be recommended to these patients on the basis of the present results.
Two-dimensional electrophoresis (2-DE) was used to analyze the pleiotropic effects of a deficiency in DsbA, a periplasmic disulfide-bond oxidoreductase, in Salmonella typhi. With this aim, the dsbA gene was cloned and assayed for activity in a dsbA-null mutant of Escherichia coli. A dsbA/chloramphenicol acetylase construct was then used to disrupt the wild-type gene of S. typhi. The resultant dsbA-null mutant of S. typhi, like the E. coli mutant, exhibited a lack of flagellation and of glucose-1-phosphatase activity. Periplasmic extracts from the parental and mutant strains were analyzed by 2-DE using standard denaturing and nondenaturing conditions. Differences in protein expression were more marked in nondenaturing conditions. Ninety-nine protein spots were analyzed by peptide mass fingerprinting, and 65 spots were identified by searching a S. typhi database. Twenty-five spots were exclusively detected in the wild-type strain, 10 were found only in the mutant strain, and 21 were common to both strains. We observed a lack of DsbA, glucose-1-phosphatase and flagellin in the dsbA-null mutant, which explains two of the observed phenotypes. The AI-2 autoinducer-producing protein LuxS, which is involved in quorum-sensing signalling was also absent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.