Biologically inspired intelligence technique, an important embranchment of series on computational intelligence, plays a crucial role for robotics. The autonomous robot and vehicle industry has had an immense impact on our economy and society and this trend will continue with biologically inspired neural network techniques. In this chapter, multiple robots cooperate to achieve a common coverage goal efficiently, which can improve the work capacity, share the coverage tasks, and reduce the completion time by a biologically inspired intelligence technique, is addressed. In many real-world applications, the coverage task has to be completed without any prior knowledge of the environment. In this chapter, a neural dynamics approach is proposed for complete area coverage by multiple robots. A bio-inspired neural network is designed to model the dynamic environment and to guide a team of robots for the coverage task. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting neural equation. Each mobile robot treats the other robots as moving obstacles. Each robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot position. The proposed model algorithm is computationally simple. The feasibility is validated by four simulation studies.