The surge of mobile devices such as smartphone and tablets requires additional capacity. To achieve ubiquitous and high data rate Internet connectivity, effective spectrum sharing and utilization of the wireless spectrum carry critical importance. In this paper, we consider the use of unlicensed LTE (LTE-U) technology in the 3.5 GHz Citizens Broadband Radio Service (CBRS) band and develop a multiarmed bandit (MAB) based spectrum sharing technique for a smooth coexistence with WiFi. In particular, we consider LTE-U to operate as a General Authorized Access (GAA) user; hereby MAB is used to adaptively optimize the transmission duty cycle of LTE-U transmissions. Additionally, we incorporate downlink power control which yields a high energy efficiency and interference suppression. Simulation results demonstrate a significant improvement in the aggregate capacity (approximately 33%) and cell-edge throughput of coexisting LTE-U and WiFi networks for different base station densities and user densities.