After the analysis and forecast of COVID-19 spreading in China, Italy, and France the WHO has declared the COVID-19 a pandemic. There are around 100 research groups across the world trying to develop a vaccine for this coronavirus. Therefore, the quantitative and qualitative analysis of the COVID–19 pandemic is needed along with the effect of rapid test infection identification on controlling the spread of COVID-19. Mathematical models with computational simulations are the effective tools that help global efforts to estimate key transmission parameters and further improvements for controlling this disease. This is an infectious disease and can be modeled as a system of non-linear differential equations with reaction rates. In this paper, we develop the models for coronavirus disease at different stages with the addition of more parameters due to interactions among the individuals. Then, some key computational simulations and sensitivity analysis are investigated. Further, the local sensitivities for each model state concerning the model parameters are computed using the model reduction techniques: the dynamical models are eventually changed with the change of parameters are represented graphically.