The deadly coronavirus continues to spread across the globe, and mathematical models can be used to show suspected, recovered, and deceased coronavirus patients, as well as how many people have been tested. Researchers still do not know definitively whether surviving a COVID-19 infection means you gain long-lasting immunity and, if so, for how long? In order to understand, we think that this study may lead to better guessing the spread of this pandemic in future. We develop a mathematical model to present the dynamical behavior of COVID-19 infection by incorporating isolation class. First, the formulation of model is proposed; then, positivity of the model is discussed. The local stability and global stability of proposed model are presented, which depended on the basic reproductive. For the numerical solution of the proposed model, the nonstandard finite difference (NSFD) scheme and Runge-Kutta fourth order method are used. Finally, some graphical results are presented. Our findings show that human to human contact is the potential cause of outbreaks of COVID-19. Therefore, isolation of the infected human overall can reduce the risk of future COVID-19 spread.
This paper presents approximate analytical solutions for systems of fractional differential equations using the differential transform method. The fractional derivatives are described in the Caputo sense. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of systems of fractional differential equations. The solutions of our model equations are calculated in the form of convergent series with easily computable components. Some examples are solved as illustrations, using symbolic computation. The numerical results show that the approach is easy to implement and accurate when applied to systems of fractional differential equations. The method introduces a promising tool for solving many linear and nonlinear fractional differential equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.