The deadly coronavirus continues to spread across the globe, and mathematical models can be used to show suspected, recovered, and deceased coronavirus patients, as well as how many people have been tested. Researchers still do not know definitively whether surviving a COVID-19 infection means you gain long-lasting immunity and, if so, for how long? In order to understand, we think that this study may lead to better guessing the spread of this pandemic in future. We develop a mathematical model to present the dynamical behavior of COVID-19 infection by incorporating isolation class. First, the formulation of model is proposed; then, positivity of the model is discussed. The local stability and global stability of proposed model are presented, which depended on the basic reproductive. For the numerical solution of the proposed model, the nonstandard finite difference (NSFD) scheme and Runge-Kutta fourth order method are used. Finally, some graphical results are presented. Our findings show that human to human contact is the potential cause of outbreaks of COVID-19. Therefore, isolation of the infected human overall can reduce the risk of future COVID-19 spread.
In the present paper, we formulate a new mathematical model for the dynamics of COVID-19 with quarantine and isolation. Initially, we provide a brief discussion on the model formulation and provide relevant mathematical results. Then, we consider the fractal-fractional derivative in Atangana-Baleanu sense, and we also generalize the model. The generalized model is used to obtain its stability results. We show that the model is locally asymptotically stable if R 0 < 1. Further, we consider the real cases reported in China since January 11 till April 9, 2020. The reported cases have been used for obtaining the real parameters and the basic reproduction number for the given period, R 0 ≈ 6.6361. The data of reported cases versus model for classical and fractal-factional order are presented. We show that the fractal-fractional order model provides the best fitting to the reported cases. The fractional mathematical model is solved by a novel numerical technique based on Newton approach, which is useful and reliable. A brief discussion on the graphical results using the novel numerical procedures are shown. Some key parameters that show significance in the disease elimination from the society are explored.
Acknowledging many effects on humans, which are ignored in deterministic models for COVID-19, in this paper, we consider stochastic mathematical model for COVID-19. Firstly, the formulation of a stochastic susceptible-infected-recovered model is presented. Secondly, we devote with full strength our concentrated attention to sufficient conditions for extinction and persistence. Thirdly, we examine the threshold of the proposed stochastic COVID-19 model, when noise is small or large. Finally, we show the numerical simulations graphically using MATLAB.
We consider the ergodic (or additive eigenvalue) problem for the Neumann-type boundary-value problem for Hamilton–Jacobi equations and the corresponding discounted problems. Denoting by uλ the solution of the discounted problem with discount factor λ > 0, we establish the convergence of the whole family to a solution of the ergodic problem as λ → 0, and give a representation formula for the limit function via the Mather measures and Peierls function. As an interesting by-product, we introduce Mather measures associated with Hamilton–Jacobi equations with the Neumann-type boundary conditions. These results are variants of the main results in a recent paper by Davini et al., who study the same convergence problem on smooth compact manifolds without boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.