The present paper describes the mathematical modeling and dynamics of a novel corona virus (2019-nCoV). We describe the brief details of interaction among the bats and unknown hosts, then among the peoples and the infections reservoir (seafood market). The seafood marked are considered the main source of infection when the bats and the unknown hosts (may be wild animals) leaves the infection there. The purchasing of items from the seafood market by peoples have the ability to infect either asymptomatically or symptomatically. We reduced the model with the assumptions that the seafood market has enough source of infection that can be effective to infect people. We present the mathematical results of the model and then formulate a fractional model. We consider the available infection cases for January 21, 2020, till January 28, 2020 and parameterized the model. We compute the basic reproduction number for the data is R 0 % 2:4829. The fractional model is then solved numerically by presenting many graphical results, which can be helpful for the infection minimization.Ó 2020 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
In the present paper, we formulate a new mathematical model for the dynamics of COVID-19 with quarantine and isolation. Initially, we provide a brief discussion on the model formulation and provide relevant mathematical results. Then, we consider the fractal-fractional derivative in Atangana-Baleanu sense, and we also generalize the model. The generalized model is used to obtain its stability results. We show that the model is locally asymptotically stable if R 0 < 1. Further, we consider the real cases reported in China since January 11 till April 9, 2020. The reported cases have been used for obtaining the real parameters and the basic reproduction number for the given period, R 0 ≈ 6.6361. The data of reported cases versus model for classical and fractal-factional order are presented. We show that the fractal-fractional order model provides the best fitting to the reported cases. The fractional mathematical model is solved by a novel numerical technique based on Newton approach, which is useful and reliable. A brief discussion on the graphical results using the novel numerical procedures are shown. Some key parameters that show significance in the disease elimination from the society are explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.