T helper (Th)-17 subsets hold promise in adoptive T cell transfer therapy for cancer. However, ex vivo programming of Th17 cells in presence of TGF-β increases cell surface expression of ectonucleotidases CD39 and CD73, that in turn increases susceptibility to immunosuppression and reduces effector functions. Our data shows that ATP mediated suppression of IFN-γ production by Th17 cells can be overcome either by genetic ablation of CD73 or by generating TGF-β independent Th17 in presence of IL-1β. Th17 cells cultured in IL-1β are also highly polyfunctional, express high level of effector molecules and exhibit better short-term control of B16-F10 murine melanoma, despite reduced stem cell like properties. Adding TGF-β at low dose that does not up regulate CD73 expression, but induces stemness, drastically improves anti-tumor function of IL-1β cultured Th17 cells. It is likely that effector property of IL-1β dependent Th17 is due to their high glycolytic capacity, since generating IL-1β dependent Th17 cells in pyruvate containing media impaired glycolysis and its anti-tumor potential. Thus, our data suggests that due to induction of ectonucleotidase expression by TGF-β, ex vivo culture conditions for generating Th17 cells need to be reconsidered for exploiting their full potential in adoptive T cell therapy.