2018
DOI: 10.12743/quanta.v7i1.65
|View full text |Cite
|
Sign up to set email alerts
|

A Quantum Implementation Model for Artificial Neural Networks

Abstract: The learning process for multi layered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow-Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, this iterative formulas result in terms formed by the principal components of the weight matrix: i.e., the eigenvectors corresponding to the non-zero eigenvalues.In quantum computing, the phase estimation algorit… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 47 publications
0
3
0
1
Order By: Relevance
“…Another interesting area of research that is likely to grow is asking if and how quantum computers can help improve state-of-the art ML algorithms (Arunachalam and de Wolf, 2017; Benedetti et al , 2016, 2017; Bromley and Rebentrost, 2018; Ciliberto et al , 2017; Daskin, 2018; Innocenti et al , 2018; Mitarai et al , 2018; Perdomo-Ortiz et al , 2017; Rebentrost et al , 2017; Schuld et al , 2017; Schuld and Killoran, 2018; Schuld et al , 2015). Concrete examples that seek to extend some of the basic ideas and methods we introduced in this review to the quantum computing realm include: algorithms for quantum-assisted gradient descent (Kerenidis and Prakash, 2017; Rebentrost et al , 2016), classification (Schuld and Petruccione, 2017), and Ridge regression (Yu et al , 2017).…”
Section: Discussionmentioning
confidence: 99%
“…Another interesting area of research that is likely to grow is asking if and how quantum computers can help improve state-of-the art ML algorithms (Arunachalam and de Wolf, 2017; Benedetti et al , 2016, 2017; Bromley and Rebentrost, 2018; Ciliberto et al , 2017; Daskin, 2018; Innocenti et al , 2018; Mitarai et al , 2018; Perdomo-Ortiz et al , 2017; Rebentrost et al , 2017; Schuld et al , 2017; Schuld and Killoran, 2018; Schuld et al , 2015). Concrete examples that seek to extend some of the basic ideas and methods we introduced in this review to the quantum computing realm include: algorithms for quantum-assisted gradient descent (Kerenidis and Prakash, 2017; Rebentrost et al , 2016), classification (Schuld and Petruccione, 2017), and Ridge regression (Yu et al , 2017).…”
Section: Discussionmentioning
confidence: 99%
“…Wurde zu Beginn noch der Vergleich mit einem Räderwerk vorgenommen, folgten später kommunizierende Röhren, dann unter dem Einfluss der Kybernetik der klassische Computer (Eckoldt 2016). Heute orientiert sich die Forschung u. a. an neuronalen Netzen, die im Gehirn zu beobachten sind und versucht sie auf die Entwicklung künstlicher Intelligenz und Quantencomputer zu übertragen (Daskin 2018;Musser 2018;Schempp 1992). Neuronale Netze erscheinen als Datenautobahnen, die je nach Bedarf angepasst werden.…”
Section: Unser Gehirn -Aktuelles Verständnis Und Aufbauunclassified
“…Another interesting area of research that is likely to grow is asking if and how quantum computers can help improve state-of-the art ML algorithms (Arunachalam and de Wolf, 2017;Benedetti et al, 2016Benedetti et al, , 2017Bromley and Rebentrost, 2018;Ciliberto et al, 2017;Daskin, 2018;Innocenti et al, 2018;Mitarai et al, 2018;Perdomo-Ortiz et al, 2017;Rebentrost et al, 2017;Schuld and Killoran, 2018;Schuld et al, 2015). Concrete examples that seek to extend some of the basic ideas and methods we introduced in this review to the quantum computing realm include: algorithms for quantum-assisted gradient descent (Kerenidis and Prakash, 2017;Rebentrost et al, 2016), classification , and Ridge regression (Yu et al, 2017).…”
Section: A Research At the Intersection Of Physics And MLmentioning
confidence: 99%