The aim of this work is to develop a die material selection criterion for aluminum hot stamping applications. The criterion has been based on the back-to-back comparison of a set of reciprocating friction and wear tests. Three representatives belonging to different stamping die material families have been selected for the study: a cold work steel, a hot work steel, and a cast iron. These tool materials have been combined with an exemplary member from two heat treatable aluminum families: 2XXX and 6XXX. Each die-material/aluminum–alloy combination has been tested at three temperatures: 40, 200, and 450 °C. The temperatures have been selected according to different stamping scenarios: long takt time press quenching, short takt time press quenching, and very short takt time hot forming without quenching, respectively. The results show that, among the three die material options available, the cold work steel turned out to be the most favorable option for high volume production and long takt time, the hot work steel fitted best for high volume production coupled with short takt time, and cast iron turned to outstand for short runs with prototype dies and for hot stamping without die quenching.