Any manufacturing equipment designed from scratch requires a detailed follow-up of the performance for the first units placed in service during the production ramp-up, so that lessons learned are immediately implemented in next deliveries and running equipment is accordingly updated. Component failure analysis is one of the most valuable sources of improvement among these lessons. In this context, a failure-assessment based design revision of the conveying system of a newly developed press hardening furnace is presented. The proposed method starts with a forensic metallurgical analysis of the failed components, followed by an investigation of the working conditions to ensure they match the forensic observations. The results of this approach evidenced an initially unforeseen thermo-mechanical damage produced by a combination of thermal distortions, material ageing, and mechanical fatigue. Once the cause–effect relationship for the failure is backed up by evidence, an improved design is proposed. As a conclusion, a new standard design for the furnace entrance set of rollers in hot stamping lines was established for roller hearth furnaces. The solution can be extended to similar applications, ensuring the same issues will not arise thanks to the lessons learned.
Several vehicle platforms involving the hot stamping of manufactured parts are launched every year. Mass production represents a key step in the manufacturing process of an actual hot stamping part. In this step, the cycle time (consisting of cooling time (t1) and handling time (t2) components) must be optimized. During t1, the stamping tool (punch and die) is closed, for cooling of the part. The t2 components (i.e., inlet transfer time, press forming time (closing and opening), and outlet transfer time) define the production output that ensures process performance. However, cost is the main driver in automotive applications. Here, a cycle-time calculation based on the design of experiments (DOE) is proposed for formulating cost-effective formulas. An iterative one-dimensional heat transfer model for each DOE step is set up to simulate 10 hot stamping cycles; the part temperature after quenching in cycle number 10 (where steady conditions are achieved) was selected as the process output variable to be controlled in the DOE. Several DOE variables were considered. The DOE results were employed for the proposal of a simplified formula, which helps in assessing the cycle time with its excellent trade-off between calculation cost and reliability. The formula was validated by laboratory tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.