fThe extended rod-like Plasmodium falciparum circumsporozoite protein (CSP) is comprised of three primary domains: a charged N terminus that binds heparan sulfate proteoglycans, a central NANP repeat domain, and a C terminus containing a thrombospondin-like type I repeat (TSR) domain. Only the last two domains are incorporated in RTS,S, the leading malaria vaccine in phase 3 trials that, to date, protects about 50% of vaccinated children against clinical disease. A seroepidemiological study indicated that the N-terminal domain might improve the efficacy of a new CSP vaccine. Using a panel of CSP-specific monoclonal antibodies, well-characterized recombinant CSPs, label-free quantitative proteomics, and in vitro inhibition of sporozoite invasion, we show that native CSP is N-terminally processed in the mosquito host and undergoes a reversible conformational change to mask some epitopes in the N-and C-terminal domains until the sporozoite interacts with the liver hepatocyte. Our findings show the importance of understanding processing and the biophysical change in conformation, possibly due to a mechanical or molecular signal, and may aid in the development of a new CSP vaccine.T he development of a vaccine to aid in the control of malaria is critical, as Plasmodium falciparum has evolved resistance to all antimalarial drugs deployed so far, including artemisinin (1). The leading malaria vaccine (RTS,S), currently in phase 3 trials, contains a formulated virus-like particle that encompasses the central and carboxyl-terminal domains of the circumsporozoite protein (CSP) fused to the hepatitis B virus surface antigen (2) and protects approximately 30% to 50% of infants or children from clinical disease for a limited duration (3, 4). Naturally derived human antibodies against a portion of the N-terminal region, including region 1, are associated with a reduced risk of disease (5), providing a basis to design new CSP vaccines. This N-terminal region of the CSP is absent from RTS,S.The importance of understanding protein structure because of its impact on the induction of broadly neutralizing antibodies and subsequent vaccine design continues to be revealed in the HIV arena (6, 7). In malaria, the importance of protein conformation for the induction of neutralizing antibodies was recently shown in vivo for an orthologue of the leading asexual-stage malaria vaccine antigen apical membrane antigen-1 (AMA-1). Only a recombinant AMA-1 forming a stable complex with a constrained synthetic rhoptry neck protein-2 peptide induced protective antibodies in vivo against a lethal blood-stage challenge malaria parasite infection (8). When developing a novel CSP vaccine, these more recent developments need to be considered with regard to the potential for changes within the CSP, such as through in vivo processing or conformational changes (9, 10) in a protein with a known extended rod-like structure (11), that could mask the adhesion domains located at the N-and C-terminal domains (9).To address these questions, a panel of CSP-speci...