In 2015 there were an estimated 214 million clinical cases and 438,000 deaths due to malaria 1 , primarily caused by Pf in children in sub-Saharan Africa. A highly effective vaccine is urgently needed to prevent malaria in individuals and to facilitate elimination of malaria from defined geographic areas. To achieve these goals, we established an interim target of >85% sterile protection against Pf infection for >6 months 2 .There is currently no malaria subunit vaccine that approaches this level of protection. The most extensively studied candidate malaria vaccine, RTS,S (a subunit vaccine based on the Pf circumsporozoite protein (PfCSP)), confers sterilizing protection against controlled human malaria infection (CHMI) in about 22% of healthy malarianaive adults 5 months after vaccination 3 . In a phase 3 field study, the efficacy of RTS,S against clinical malaria was 26% and 36% in young infants and children between the ages of 5 and 17 months, respectively, through 38-48 months of follow-up following a fourdose regimen on a 0-, 1-, 2-, and 20-month schedule 4 . Therefore, it is necessary to investigate alternative vaccination strategies that confer long-lived sterilizing protection 5,6 .Sustained sterilizing immunity against the pre-erythrocytic stages of Pf has been observed in humans immunized by wholeparasite approaches using mosquitoes for vaccination 7,8 . In a study An attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) vaccine, PfSPZ Vaccine, is highly protective against controlled human malaria infection (CHMI) 3 weeks after immunization, but the durability of protection is unknown. We assessed how vaccine dosage, regimen, and route of administration affected durable protection in malaria-naive adults. After four intravenous immunizations with 2.7 × 10 5 PfSPZ, 6/11 (55%) vaccinated subjects remained without parasitemia following CHMI 21 weeks after immunization. Five non-parasitemic subjects from this dosage group underwent repeat CHMI at 59 weeks, and none developed parasitemia. Although Pf-specific serum antibody levels correlated with protection up to 21-25 weeks after immunization, antibody levels waned substantially by 59 weeks. Pf-specific T cell responses also declined in blood by 59 weeks.To determine whether T cell responses in blood reflected responses in liver, we vaccinated nonhuman primates with PfSPZ Vaccine. Pf-specific interferon-g-producing CD8 T cells were present at ~100-fold higher frequencies in liver than in blood. Our findings suggest that PfSPZ Vaccine conferred durable protection to malaria through long-lived tissue-resident T cells and that administration of higher doses may further enhance protection.
Plasmodium vivax malaria is characterized by periodic relapses of symptomatic blood stage parasite infections likely initiated by activation of dormant liver stage parasites -hypnozoites. The lack of tractable animal models for P. vivax constitutes a severe obstacle to investigate this unique aspect of its biology and to test drug efficacy against liver stages. We show that the FRG KO huHep liver-humanized mice support P. vivax sporozoite infection, development of liver stages, and the formation of small non-replicating hypnozoites. Cellular characterization of P. vivax liver stage development in vivo demonstrates complete maturation into infectious exo-erythrocytic merozoites and continuing persistence of hypnozoites. Primaquine prophylaxis or treatment prevents and eliminates liver stage infection. Thus, the P. vivax/FRG KO huHep mouse infection model constitutes an important new tool to investigate the biology of liver stage development and dormancy and might aid in the discovery of new drugs for the prevention of relapsing malaria.
Background:The acetyl-CoA biosynthetic pathways of the malaria parasite are unclear. Results:13 C-Labeling experiments in parasites lacking a functional pyruvate dehydrogenase (PDH) complex show that the PDH does not contribute significantly to the acetyl-CoA pool. Conclusion:The majority of acetyl-CoA biosynthesis in the parasite derives from a PDH-like enzyme and acetyl-CoA synthetase. Significance: The two routes for acetyl-CoA synthesis appear to have separate functions.
BackgroundMalaria remains a major human health problem, with no licensed vaccine currently available. Malaria infections initiate when infectious Plasmodium sporozoites are transmitted by Anopheline mosquitoes during their blood meal. Investigations of the malaria sporozoite are, therefore, of clear medical importance. However, sporozoites can only be produced in and isolated from mosquitoes, and their isolation results in large amounts of accompanying mosquito debris and contaminating microbes.MethodsHere is described a discontinuous density gradient purification method for Plasmodium sporozoites that maintains parasite infectivity in vitro and in vivo and greatly reduces mosquito and microbial contaminants.ResultsThis method provides clear advantages over previous approaches: it is rapid, requires no serum components, and can be scaled to purify >107 sporozoites with minimal operator involvement. Moreover, it can be effectively applied to both human (Plasmodium falciparum, Plasmodium vivax) and rodent (Plasmodium yoelii) infective species with excellent recovery rates.ConclusionsThis novel method effectively purifies viable malaria sporozoites by greatly reducing contaminating mosquito debris and microbial burdens associated with parasite isolation. Large-scale preparations of purified sporozoites will allow for enhanced in vitro infections, proteomics, and biochemical characterizations. In conjunction with aseptic mosquito rearing techniques, this purification technique will also support production of live attenuated sporozoites for vaccination.
Genetic crosses of phenotypically distinct strains of the human malaria parasite Plasmodium falciparum are a powerful tool for identifying genes controlling drug resistance and other key phenotypes. Previous studies relied on the isolation of recombinant parasites from splenectomized chimpanzees, a research avenue that is no longer available. Here, we demonstrate that human-liver chimeric mice support recovery of recombinant progeny for the identification of genetic determinants of parasite traits and adaptations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.