In this report, a novel fluorescent sensing platform using nitrogen-doped carbon dots (N-CDs) as probes for fluorescence signal transmission has been designed for the detection of significant biomolecules pyrophosphate (PPi) and alkaline phosphatase (ALP). The high fluorescent N-CDs could be selectively quenched by Cu2+, and recovered by the addition of PPi because PPi preferentially binds to Cu2+. Once ALP was introduced into the system, ALP can specifically hydrolyze PPi into Pi, the intense fluorescence of N-CDs could be quenched again due to the recombination of the as-released Cu2+ with N-CDs. So, fluorescence of N-CDs is regulated by an ALP-triggered reaction. Based on this strategy, we demonstrated that N-CDs could serve as a very effective fluorescent sensing platform for label-free, sensitive and selective detection of PPi and ALP with low detection limit of 0.16 μM and 0.4 U/L for PPi and ALP, respectively. Moreover, the assay time is just around 0.5 min for PPi and 30 min for ALP. This developed strategy shows remarkable advantages including sensitive, rapid, simple, convenient, and low-cost and so forth. Furthermore, this method was also successfully applied to monitor ALP in human serum, which indicates its great potential for practical applications in biological and clinical diagnosis.