2018
DOI: 10.1088/1742-6596/978/1/012038
|View full text |Cite
|
Sign up to set email alerts
|

A real time mobile-based face recognition with fisherface methods

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
3
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 4 publications
0
3
0
1
Order By: Relevance
“…Hasil yang didapatkan dari penelitian adalah: 1. Pengolahan Citra Citra merupakan suatu reprentasi (gambar), kemiripan, dan imitasi dari suatu objek (Arisandi et al, 2018). Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optic berupa foto, bersifat analog berupa sinyal-sinyal video seperti gambar pada monitor televisi, atau bersifat duigital yang dapat langsung disimpan pada suatu media penyimpanan.…”
Section: Hasil Dan Pembahasanunclassified
“…Hasil yang didapatkan dari penelitian adalah: 1. Pengolahan Citra Citra merupakan suatu reprentasi (gambar), kemiripan, dan imitasi dari suatu objek (Arisandi et al, 2018). Citra sebagai keluaran suatu sistem perekaman data dapat bersifat optic berupa foto, bersifat analog berupa sinyal-sinyal video seperti gambar pada monitor televisi, atau bersifat duigital yang dapat langsung disimpan pada suatu media penyimpanan.…”
Section: Hasil Dan Pembahasanunclassified
“…Directional Local Binary Patterns (dLBP) [34] used the central pixel parameter to determine the neighbours in the same orientation, dLBP proposed in 2015. Arisandi et al [35] developed a real-time phone application for face recognition. The application used Fisherface to recognize students; the accuracy of this application is 90%.…”
Section: Related Workmentioning
confidence: 99%
“…Face recognition is a well established field of research with many practical applications [17][18][19][20][21][22][23]. Compressed sensing methods are successfully applied to solve problems in face classification and recognition [24][25][26][27].…”
Section: Face Recognitionmentioning
confidence: 99%