We introduce and analyze a fast horizon detection algorithm with native radial distortion handling and its implementation on a low power field programmable gate array (FPGA) development board in this paper. The algorithm is suited for visual applications in an airborne environment, that is on board a small unmanned aircraft. The algorithm was designed to have low complexity because of the power consumption requirements. To keep the computational cost low, an initial guess for the horizon is used, which is provided by the attitude heading reference system of the aircraft. The camera model takes radial distortions into account, which is necessary for a wide-angle lens used in most applications. This paper presents formulae for distorted horizon lines and a gradient sampling-based resolution-independent single shot algorithm for finding a horizon with radial distortion without undistortion of the complete image. The implemented algorithm is part of our visual sense-and-avoid system, where it is used for the sky-ground separation, and the performance of the algorithm is tested on real flight data. The FPGA implementation of the horizon detection method makes it possible to add this efficient module to any FPGA-based vision system.