PURPOSE The tumor microenvironment is complex, comprising heterogeneous cellular populations. As molecular profiles are frequently generated using bulk tissue sections, they represent an admixture of multiple cell types (including immune, stromal, and cancer cells) interacting with each other. Therefore, these molecular profiles are confounded by signals emanating from many cell types. Accurate assessment of residual cancer cell fraction is crucial for parameterization and interpretation of genomic analyses, as well as for accurately interpreting the clinical properties of the tumor. MATERIALS AND METHODS To benchmark cancer cell fraction estimation methods, 10 estimators were applied to a clinical cohort of 333 patients with prostate cancer. These methods include gold-standard multiobserver pathology estimates, as well as estimates inferred from genome, epigenome, and transcriptome data. In addition, two methods based on genomic and transcriptomic profiles were used to quantify tumor purity in 4,497 tumors across 12 cancer types. Bulk mRNA and microRNA profiles were subject to in silico deconvolution to estimate cancer cellâspecific mRNA and microRNA profiles. RESULTS We present a systematic comparison of 10 tumor purity estimation methods on a cohort of 333 prostate tumors. We quantify variation among purity estimation methods and demonstrate how this influences interpretation of clinico-genomic analyses. Our data show poor concordance between pathologic and molecular purity estimates, necessitating caution when interpreting molecular results. Limited concordance between DNA- and mRNA-derived purity estimates remained a general pan-cancer phenomenon when tested in an additional 4,497 tumors spanning 12 cancer types. CONCLUSION The choice of tumor purity estimation method may have a profound impact on the interpretation of genomic assays. Taken together, these data highlight the need for improved assessment of tumor purity and quantitation of its influences on the molecular hallmarks of cancers.