Accurately measuring water use by the economy is essential for developing reliable models of water resource availability. Indeed, these models rely on retrospective analyses that provide insights into shifting human population demands and adaptions to water shortages. However, accurate, methodologically consistent, empirically authentic, and spatiotemporally comprehensive historical datasets for water withdrawals are scarce. Herein, we present a reanalysis of annual resolution (1950–2016) historical data set on irrigation, electric power, and public supply water withdrawal within the conterminous United States (US) at the county‐level, and, for power plants, at the site‐level. To estimate electric power water use, we synthesized a historically comprehensive list of generators and historic patterns in generation across fuels, prime movers, and cooling technologies. Irrigation water use estimation required building a crop‐demand model that utilized historical information on irrigated acreage for crops and golf courses, stage‐specific crop water demand, and climate information. To estimate public water supply use, we developed a random forest model constructed from information on population, infrastructure, climate, and land cover. These estimates generally agree with total county and state water use information provided by the US Geological Survey (USGS) water use circular and estimates generated from independent studies for specific years. However, we also observed discrepancies between our estimates and USGS data that appear to be caused by inconsistencies in the methods used by the USGS's primary data sources at the state level over decades of data collection, highlighting the importance of reanalysis to yield spatiotemporally consistent and intercomparable estimates of water use.