2005
DOI: 10.4213/tvp103
|View full text |Cite
|
Sign up to set email alerts
|

A remark on a large deviation theorem for Markov chain with a finite number of states

Abstract: Рассматривается классическая проблема больших уклонений для сумм случайных величин, заданных на состояниях однородной цепи Мар кова с конечным фазовым пространством. Устанавливается точная асим птотика для вероятностей больших уклонений порядка О [у/и). Доказа тельство основано на применении нового типа локальной теоремы. Ключевые слова и фразы: сопряженное распределение, локальная теорема, возмущение спектра, монотонная ^-аппроксимация.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
8
0

Year Published

2008
2008
2010
2010

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(8 citation statements)
references
References 6 publications
0
8
0
Order By: Relevance
“…The following theorem corresponds to the result obtained in [18] for a finitestate Markov chain with a strictly positive transition matrix P = (p ij ) 1≤i,j≤d . In that case the condition (Ψ) is satisfied with…”
Section: Introduction and Resultsmentioning
confidence: 80%
See 2 more Smart Citations
“…The following theorem corresponds to the result obtained in [18] for a finitestate Markov chain with a strictly positive transition matrix P = (p ij ) 1≤i,j≤d . In that case the condition (Ψ) is satisfied with…”
Section: Introduction and Resultsmentioning
confidence: 80%
“…By Lemma 1, Lemma 2 and the proof of Theorem 2 in [18] we have the following local limit theorem of the Shepp-Stone type in the operator form. …”
Section: Local Limit Theoremsmentioning
confidence: 91%
See 1 more Smart Citation
“…Following [10], we consider the primitive matrix Q.s/ having the entries q rq .s/ D e s f .q/ p rq ; 1 · r; q · d; s 2 R: (9) By the Perron-Frobenius theorem (see, for example, Theorem 8.2.11 in [1]) the maximal eigenvalue of Q.s/, which is also called a spectral radius, is simple and its left and right eigenvectors are strictly positive. Denote these characteristics, respectively, by ½.s/, u.s/, and v.s/.…”
Section: The Conjugate Markov Chainmentioning
confidence: 97%
“…In [10], it is proved that ¹ .q/ n weakly converges to the product measure¸£ ¼ . Hence for any continuous compactly supported function g.u/, as n !…”
Section: What Follows From the Classical Limit Theoremsmentioning
confidence: 98%