Annual mean wind speed distribution models for power generation based on regional wind resource maps are limited by spatial and temporal resolutions. These models, in general, do not consider the impact of local terrain and atmospheric circulations. In this study, long-term five-year wind data at three sites on the North, East, and West of the Baltimore metropolitan area, Maryland, USA are statistically analyzed. The Weibull probability density function was defined based on the observatory data. Despite seasonal and spatial variability in the wind resource, the annual mean wind speed for all sites is around 3 m/s, suggesting the region is not suitable for large-scale power generation. However, it does display a wind power capacity that might allow for non-grid connected small-scale wind turbine applications. Technical and economic performance evaluations of more than 150 conventional small-scale wind turbines showed that an annual capacity factor and electricity production of 11% and 1990 kWh, respectively, are achievable. It results in a payback period of 13 years. Government incentives can improve the economic feasibility and attractiveness of investments in small wind turbines. To reduce the payback period lower than 10 years, modern/unconventional wind harvesting technologies are found to be an appealing option in this region. Key contributions of this work are (1) highlighting the need for studying the urban physics rather than just the regional wind resource maps for wind development projects in the build-environment, (2) illustrating the implementation of this approach in a real case study of Maryland, and (3) utilizing techno-economic data to determine suitable wind harnessing solutions for the studied sites.