Background: Generalization model capacity of deep learning (DL) approach for atrial fibrillation (AF) detection remains lacking. It can be seen from previous researches, the DL model formation used only a single frequency sampling of the specific device. Besides, each electrocardiogram (ECG) acquisition dataset produces a different length and sampling frequency to ensure sufficient precision of the R-R intervals to determine the Heart Rate Variability (HRV). An accurate HRV is the gold standard for predicting the AF condition. Hence, we propose a DL approach to analyze massive amounts of ECG raw data in a broad range of devices to overcome a current challenge.Results: This paper demonstrates powerful results for end-to-end implementation of AF detection based on a convolutional neural network (AFibNet). The method used a single learning system without considering the variety of signal lengths and frequency samplings. For implementation, the AFibNet is processed with a computational cloud-based DL approach. This study utilized a one-dimension convolutional neural networks (1D-CNNs) model for 11,842 subjects. It was trained and validated with 8,232 records based on three datasets and tested with 3,610 records based on eight datasets. The predicted results, when compared with the diagnosis results indicated by human practitioners, showed a 99.80% accuracy, sensitivity, and specificity. When tested with unseen data, the AF detection reaches 98.94% accuracy, 98.97% sensitivity, and 98.97% specificity in 0.02 seconds for one instance when processed in theDL-Cloud System.Conclusions: These findings demonstrate that the proposed model approach can used in a broad range of devices and validated to unknown data to derive feature maps and reliably detect the AF periods. We have found that our cloud-DL system is suitable for practical deployment.