Modular product platforms have been shown to provide substantial cost and time savings while still allowing companies to offer a variety of products. As a result, a multitude of product platform methods have been developed over the last decade within the design research community. However, comparison and integration of suitable methods is difficult since the methods have, for the most part, been developed in isolation from one another. In reviewing the literature in modularity and product platforms, we create a generic set of 13 platform design steps for developing a platform concept. We then examine a set of product platform concept development processes used at several different companies, and from this form a generic sequence of the steps. We then associate the various developed methods to the sequence, thereby enabling the chaining together of the various modular and platform design methods developed by the community.
Unmanned Aerial Vehicles (UAVs) have been developed to perform various military and civilian applications, such as reconnaissance, attack missions, surveillance of pipelines, and interplanetary exploration. The present research is motivated by the need to develop a fast adaptable UAV design technologies for agile, fuel efficient, and flexible structures that are capable of adapting and operating in any environments. The objective of this research is to develop adaptive design technologies by investigating current design methods and knowledge of deployable technologies in the area of engineering design and manufacturing. More specifically, this research seeks to identify one truss lattice with the optimal elastic performance for deployable UAV wing design according to the Hashin & Shtrikman theoretical bounds. We propose three lattice designs -3D Kagome structure, 3D pyramidal structure and the hexagonal diamond structure. The proposed lattice structure designs are fabricated using an Objet 350 3D printer while the material chosen is a polypropylene-like photopolymer called Objet DurusWhite RGD430. Based on compression testing, the proposed inflatable wing design will combine the advantages of compliant mechanisms and deployable structures to maximize flexibilities of movement in UAV design and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.