Smart contracts, programs running on a blockchain, play a crucial role in driving Web 3.0 across a variety of domains, such as digital finance and future networks. However, they currently face significant security vulnerabilities that could result in potential risks and losses. This paper outlines the inherent vulnerabilities of smart contracts, both those typical of their applications and those unique to Web 3.0 applications. We then systematically classify the techniques based on their core approach to detecting vulnerabilities in smart contracts. Using these approaches, we conduct a comparative analysis of existing tools in terms of their vulnerability coverage, detection effectiveness, open-source availability, and integration capabilities. Finally, we present the Co-Governed Sovereignty Multi-Identifier Network (CoG-MIN) as a case study to demonstrate the significance of smart contract application security in establishing a community with a shared future in cyberspace during the Web 3.0 era and anticipate future research directions with challenges. To conclude, this study addresses the gap in integrating existing smart contract security research with the advancement of Web 3.0 development, while also providing recommendations for future research directions.