2015
DOI: 10.1016/j.procs.2015.04.160
|View full text |Cite
|
Sign up to set email alerts
|

A Review of Short Term Load Forecasting using Artificial Neural Network Models

Abstract: The electrical short term load forecasting has been emerged as one of the most essential field of research for efficient and reliable operation of power system in last few decades. It plays very significant role in the field of scheduling, contingency analysis, load flow analysis, planning and maintenance of power system. This paper addresses a review on recently published research work on different variants of artificial neural network in the field of short term load forecasting. In particular, the hybrid net… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
79
0
4

Year Published

2017
2017
2023
2023

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 192 publications
(83 citation statements)
references
References 21 publications
0
79
0
4
Order By: Relevance
“…There are several types of methods that have been applied to find the best forecasting model [3]. Recent studies have shown that load consumption patterns are highly related to exogenous factors such as weather conditions,…”
Section: Introductionmentioning
confidence: 99%
“…There are several types of methods that have been applied to find the best forecasting model [3]. Recent studies have shown that load consumption patterns are highly related to exogenous factors such as weather conditions,…”
Section: Introductionmentioning
confidence: 99%
“…Various machine learning techniques such as neural networks (NN) have attracted greater attention for applications in DSM. Often, their application can be found in load forecasting [23,24]. Furthermore, various types of home energy management systems implement machine learning for decision making.…”
Section: Introductionmentioning
confidence: 99%
“…Genel anlamda geliştirilen metotlar, ülkelerin iklimsel ve enerji kaynakları açısından farklı özelliklerini ve toplum kültürlerinden gelen davranış biçimlerini değerlendirmekten uzak olduğundan, bunların her ülkeye uygulanması mümkün değildir. Bu [9], çalışmalarında kısa dönem elektrik tahmininde kullanılan farklı hibrit YSA modellerini incelemiş ve doğrusal olmayan zaman serilerinin kullanılması sırasında karşılaşılan problemlerin yapay zekâ tabanlı tahmin programları ile üstesinden gelinebileceğini belirlemiştir. Baziar [10], İran'ın kısa dönem elektrik yük değerlerini tahmin etmek için oluşturulan YSA'lardaki eksikliklerin üstesinden gelebilecek destek vektör regresyon analizine dayalı yeni bir hibrit yöntem önermiştir.…”
Section: Gi̇ri̇ş (Introduction)unclassified