Our primary objective of this work was to design and test a new time-of-flight (TOF) method that allows measurements of shear wave speed (SWS) following impulsive excitation in soft tissues. Particularly, under the assumption of the local plane shear wave, this work named the Fourier-domain shift matching (FDSM) method, estimates SWS by aligning a series of shear waveforms either temporally or spatially using a solution space deduced by characteristic curves of the well-known 1-D wave equation. The proposed SWS estimation method was tested using computer-simulated data, and tissue-mimicking phantom and ex vivo tissue experiments. Its performance was then compared with three other known TOF methods: lateral time-to-peak (TTP) method with robust random sampling consensus (RANSAC) fitting method, Radon sum transformation method, and a modified cross correlation method. Hereafter, these three TOF methods are referred to as the TTP-RANSAC, Radon sum, and X-corr methods, respectively. In addition to an adapted form of the 2-D Fourier transform (2-D FT)-based method in which the (group) SWS was approximated by averaging phase SWS values was considered for comparison. Based on data evaluated, we found that the overall performance of the above-mentioned temporal implementation of the proposed FDSM method was most similar to the established Radon sum method (correlation = 0.99, scale factor = 1.03, and mean difference = 0.07 m/s), and the 2-D FT (correlation = 0.98, scale factor = 1.00, and mean difference = 0.10 m/s) at high signal quality. However, results obtained from the 2-D FT method diverged (correlation = 0.201) from these of the proposed temporal implementation in the presence of diminished signal quality, whereas the agreement between the Radon sum approach and the proposed temporal implementation largely remained the same (correlation = 0.98).