2021
DOI: 10.1007/978-3-030-73100-7_60
|View full text |Cite
|
Sign up to set email alerts
|

A Review of Time-Series Anomaly Detection Techniques: A Step to Future Perspectives

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
22
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
3

Relationship

1
7

Authors

Journals

citations
Cited by 67 publications
(25 citation statements)
references
References 37 publications
0
22
0
3
Order By: Relevance
“…Shaukat pada [15] menyatakan bahwa menentukan rentang data normal dalam membangun sistem merupakan sebuah tantangan dalam membangun sistem deteksi anomali pada data time series. Penelitian terkait deteksi kesalahan data telah dilakukan oleh wibowo pada [16].…”
Section: Pendahuluanunclassified
“…Shaukat pada [15] menyatakan bahwa menentukan rentang data normal dalam membangun sistem merupakan sebuah tantangan dalam membangun sistem deteksi anomali pada data time series. Penelitian terkait deteksi kesalahan data telah dilakukan oleh wibowo pada [16].…”
Section: Pendahuluanunclassified
“…ML techniques have widely used in the domain of education [13,14], software measurement [15][16][17], decision support system [18,19], social sciences [20,21], healthcare [22][23][24], and disease diagnosis [9,25]. Numerous computational methods were used in the renewable energy domain [26][27][28][29][30].…”
Section: Introductionmentioning
confidence: 99%
“…Designing a time series forecast for a particular use case typically incorporates five sections. The first section of the design process is the data preprocessing to transform the raw data into a desirable form for the forecasting method (Shaukat et al, 2021; Wang & Wang, 2020). The second section is feature engineering, which aims to extract hidden characteristics of the considered time series or to identify useful exogenous information for the forecasting method (Zebari et al, 2020).…”
Section: Introductionmentioning
confidence: 99%
“…In this context, the long‐term objective toward full automation has motivated numerous researchers and led to promising research results in the fields related to this review study, as shown in Figure 2. Several surveys and review studies analyze the automation of single forecasting pipeline sections such as preprocessing (Shaukat et al, 2021; Wang & Wang, 2020), feature engineering (Zebari et al, 2020), HPO and forecasting method selection (Hutter et al, 2019; Zöller & Huber, 2021), and forecast ensembling (Hajirahimi & Khashei, 2019). Moreover, rather than focusing on the automated design of the entire forecasting pipeline, existing studies on time series forecasting only consider the statistical or machine learning forecasting methods themselves (De Gooijer & Hyndman, 2006; Han et al, 2019; Taieb et al, 2012).…”
Section: Introductionmentioning
confidence: 99%