Injuries to the hand's flexor pulley system can be debilitating, causing pain and restricting movement of the affected finger(s). The creation of a biocompatible artificial pulley could potentially alleviate some of the complications associated with current surgical treatments. In this study, a biocompatible artificial pulley was fabricated by using polycaprolactone (PCL) and polyurethane (PU) in the form of an electrospun nanofiber structure. All scaffolds were structurally analyzed using FESEM imaging, porosity, FTIR, and DSC examinations. Mechanical properties were evaluated, and in vitro studies were conducted on the degradation rate, swelling ratio, and toxicity. Immune response to fabricated scaffolds was evaluated by implanting them under the skin of rats for further pathological examination. All scaffolds exhibited a nanoscale structure and high porosity without any undesirable functional groups. The 25% PCL scaffold showed 17%, 20%, 80%, 17%, and 70% significant increases in F max , final stress, final strain, Young's modulus, and elongation percentage, respectively. In fact, the PCL25% scaffold demonstrated more than 100% improvement in mechanical properties compared to those of A2 and A4 natural pulleys. Additionally, all scaffold structures showed cell viability similar to that of the control sample. The study suggests that scaffolds made of 25% PCL hold promise as effective artificial pulleys for reconstructing the flexor tendon pulley system in cases of injury.