Abstract
Data on the prevalence of resistance to mupirocin (MUP), fusidic acid (FA) and retapamulin (RET) in methicillin-resistant Staphylococcus aureus (MRSA) from China are still limited. In this study we examined these three antibiotics resistance pheno and geno-typically in 1206 MRSA clinical isolates. Phenotypic MUP, FA and RET resistance was determined by MICs, and genotypically by PCR and DNA sequencing examining genes mupA / B , fusB - D , cfr and vgaA / Av , and mutations in ileS , fusA / E , rplC , and 23S RNA V domain. The genetic characteristics of resistance isolates were conducted by PFGE and MLST. Overall MRSA MUP, FA and RET resistance was low (5.1%, 1.0% and 0.3%, respectively). The mupA was the mechanism of high-level MUP resistance. All low-level MUP resistance isolates possessed an equivocal mutation N213D in IleS, and 2 of them additionally had the reported V588F mutation impacting the Rossman fold. FusA mutations, such as L461K, H457Q, H457Y and V90I, were the primary FA resistance mechanisms among high-level resistance isolates, most of which contained fusC ; however, all low-level resistance strains carried fusB . No resistance mechanisms detected were found among RET resistance isolates. Genetic analysis demonstrated clone spread for MUP resistance isolates. In conclusion, MUP, FA and RET exhibited highly activity against MRSA isolates. Acquired genes and chromosome-borne genes mutations were responsible for MUP and FA resistance, and further investigation is needed to uncover the RET resistance mechanisms. Moreover, the surveillance to MUP in MRSA should be strengthened to prevent resistance increase due to the expansion of clones.