The question 'What is computation?' might seem a trivial one to many, but this is far from being in consensus in philosophy of mind, cognitive science and even in physics. The lack of consensus leads to some interesting, yet contentious, claims, such as that cognition or even the universe is computational. Some have argued, though, that computation is a subjective phenomenon: whether or not a physical system is computational, and if so, which computation it performs, is entirely a matter of an observer choosing to view it as such. According to one view, which we dub bold anti-realist pancomputationalism, every physical object (can be said to) computes every computer program. According to another, more modest view, some computational systems can be ascribed multiple computational descriptions. We argue that the first view is misguided, and that the second view need not entail observer-relativity of computation. At least to a large extent, computation is an objective phenomenon. Construed as a form of information processing, we argue that informationprocessing considerations determine what type of computation takes place in physical systems. Abstract. The question 'What is computation?' might seem a trivial one to many, but this is far from being in consensus in philosophy of mind, cognitive science and even in physics. The lack of consensus leads to some interesting, yet contentious, claims, such as that cognition or even the universe is computational. Some have argued, though, that computation is a subjective phenomenon: whether or not a physical system is computational, and if so, which computation it performs, is entirely a matter of an observer choosing to view it as such. According to one view, which we dub bold anti-realist pancomputationalism, every physical object (can be said to) computes every computer program. According to another, more modest view, some computational systems can be ascribed multiple computational descriptions. We argue that the first view is misguided, and that the second view need not entail observer-relativity of computation. At least to a large extent, computation is an objective phenomenon. Construed as a form of information processing, we argue that information-processing considerations determine what type of computation takes place in physical systems.