Adsorption is at the heart of many processes from gas separation to cooling. The design of adsorption-based processes requires equilibrium adsorption properties. However, data for adsorption equilibria are limited, and therefore, a model is desirable that uses as little data as possible for its parametrization, while allowing for data interpolation or even extrapolation. This work presents a physics-based model for adsorption isotherms and other equilibrium adsorption properties. The model is based on onedimensional classical density functional theory (1D-DFT) and the perturbed-chain statistical associating fluid theory (PC-SAFT). The physical processes inside the pores are considered in a thermodynamically consistent approach that is computationally efficient. Once parametrized with a single isotherm, the model is able to extrapolate to other temperatures and outperforms the extrapolation capabilities of state-of-the-art models, such as the empirical isotherm models from Langmuir or Toth. Furthermore, standard combining rules can be used to transfer parameters adjusted to an adsorbent/fluid pair to other fluids. These features are demonstrated for the adsorption of N 2 , CH 4 , and CO 2 in metal-organic frameworks. Thereby, the presented model can calculate temperature-dependent isotherms for various fluids by using data limited to a single isotherm as input.