The heat capacity of a material is a fundamental property that is of significant practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material.However, for most materials suitable for carbon capture applications the heat capacity is not known, and thus the standard procedure is to assume the same value for all materials. In this work, we developed a machine-learning approach to accurately predict the heat capacity of these materials, i.e., zeolites, metal-organic frameworks, and covalent-organic frameworks. The accuracy of our prediction is confirmed with novel experimental data. Finally, for a temperature swing adsorption process that captures carbon from the flue gas of a coal-fired power plant, we show that for some materials the heat requirement is reduced by as much as a factor of two using the correct heat capacity.
The current concentration of carbon dioxide in the atmosphere demands for development of negative emission solutions such as direct carbon dioxide removal from the atmosphere (air capture). Many well-established processes can remove carbon dioxide from the atmosphere but the real technological challenge consists of concentrating and compressing carbon dioxide at the conditions for long term geological storage, with efficient use of non-fossil energy sources. A thermally-driven, negative-carbon adsorption process for capture, purification and compression of carbon dioxide from air is proposed. The process is based on a series of batch adsorption compressors of decreasing size to deliver a compressed carbon dioxide stream to a final storage. Thermodynamic analysis of the process shows that, by exploiting the equilibrium properties of commercial and non-commercial materials, carbon dioxide can be produced at specifications appropriate for geological storage. By operating the process with zeolite 13X at regeneration temperature of 95°C, a final storage vessel can be pressurized with carbon dioxide at purities >0.95 mole fraction and specific energy consumption <2.2 MJth molCO2-1. Tailored materials provide a step-change in performance. When the process operates with zeolite NaETS-4, carbon dioxide can be purified at values >0.97 mole fraction.
The need to create a new approach to carbon capture processes that are economically viable has led to the design and synthesis of sorbents that selectively capture carbon dioxide by physisorption. Solid Ionic Liquids (SoILs) were targeted because of their tunable properties and solid form under operational conditions. Molecular modelling was used to identify candidate SoILs and a number of materials based on the low cost, environmentally friendly acetate anion were selected. The materials showed excellent selectivity for carbon dioxide over nitrogen and oxygen and moderate sorption capacity. However, the rate of capture was extremely fast, in the order of a few seconds for a complete adsorb-desorb cycle, under pressure swing conditions from 1 to 10 bar. This showed the importance of rate of sorption cycling over capacity and demonstrates that smaller inventories of sorbents and smaller process equipment are required to capture low concentration CO streams. Concentrated CO was isolated by releasing the pressure back to atmospheric. The low volatility and thermal stability of SoILs mean that both plant costs and materials costs can be reduced and plant size considerably reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.