The Internet of Things connects billions of intelligent devices that can interact with one another without human intervention, and during communication, a large amount of data is exchanged between the devices. As a result, it is critical to secure digital data using an encryption technique that provides a suitable degree of security. Numerous existing encryption techniques do not offer sufficient security. Therefore, it is critical to figure out which encryption technique is most appropriate for a particular kind of data. When it comes to manually deciding which encryption technique to use, the process might take a long time. In this research, we present a novel technique for selecting Encryption Algorithms (EAs) based on a particular application using pattern recognition and machine learning techniques. To accomplish this goal, we also prepare a dataset. Several machine learning techniques, such as Support Vector Machines (SVMs), Linear Regression (LR),
K
-Nearest Neighbour (KNN), Naïve Bayes (NB), Decision Trees (DT), and Random Forests (RF), are evaluated. Based on the evaluation, the SVM has been chosen as the best option for the intended technique because its classification accuracy is 98.7%. The experimental results, including accuracy, precision, recall, and F1-score, are used to gauge the performance of the suggested technique. The proposed technique is also compared with the existing techniques to demonstrate its effectiveness.