In this paper, we discuss techniques by which the aeroacoustic properties of the turbulent flow in a rod-airfoil benchmark experiment can be inferred from time-resolved PIV measurement. While acoustic measurements can be made directly using microphones, the proposed techniques provide a means to directly link acoustic waves with specific flow events, which is invaluable in devising noise mitigation strategies. The approaches are possible thanks to recent improvements in digital and camera technology that can provide time-resolved measurements in air flows, necessary for the determination of unsteady flow quantities related to aeroacoustic production. Both techniques are based on Curle's acoustic analogy, where one is based on Lagrangian determination of the required quantities, while the other requires all flow quantities to be converted into Fourier modes. Application of both techniques yields results that are in reasonable agreement with microphone noise measurements for the rod-airfoil experiment.