Acellular dermal matrix (ADM) can be used as collagen-based biological patches for regeneration and repair of soft tissues in vivo. However, the problems of calcification and infection during treatment with patches can lead to premature patch failure and even to a severely increased risk of recurrence. In this study, first, porcine ADM (pADM) grafted with vinyl underwent an in situ cross-linking reaction in the presence of an initiator, while quaternary ammonium groups were introduced into the pADM during the cross-linking process to obtain MAâDMCâpADM, which is a biological patch with anti-infection and anti-calcification properties. The results of physicochemical property tests of the material showed that the pADM after cross-linking had better physical and mechanical properties. Importantly, antibacterial and anti-calcification experiments showed that MAâDMCâpADM had a good antibacterial and anti-calcification effect. Therefore, the MAâDMCâpADM biological patch facilitates their longer-lasting effectiveness, allowing pADM to be used in a wider range of applications.