We consider the forward Kolmogorov equation corresponding to measure-valued processes stemming from a class of interacting particle systems in population dynamics, including variations of the Bolker-Pacala-Dieckmann-Law model. Under the assumption of detailed balance, we provide a rigorous generalized gradient structure, incorporating the fluxes arising from the birth and death of the particles.Moreover, in the large population limit, we show convergence of the forward Kolmogorov equation to a Liouville equation, which is a transport equation associated with the mean-field limit of the underlying process. In addition, we show convergence of the corresponding gradient structures in the sense of Energy-Dissipation Principles, from which we establish a propagation of chaos result for the particle system and derive a generalized gradient-flow formulation for the mean-field limit.