2021
DOI: 10.48550/arxiv.2112.11055
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A Scalable Deep Reinforcement Learning Model for Online Scheduling Coflows of Multi-Stage Jobs for High Performance Computing

Abstract: Coflow is a recently proposed networking abstraction to help improve the communication performance of data-parallel computing jobs. In multi-stage jobs, each job consists of multiple coflows and is represented by a Directed Acyclic Graph (DAG). Efficiently scheduling coflows is critical to improve the data-parallel computing performance in data centers. Compared with hand-tuned scheduling heuristics, existing work DeepWeave [1] utilizes Reinforcement Learning (RL) framework to generate highly-efficient coflow … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?