Plant cell walls are composed of an intricate network of polysaccharides and proteins that varies during the developmental stages of the cell. This makes it very challenging to address the functions of individual wall components in cells, especially for highly complex glycans. Fortunately, structurally defined oligosaccharides can be used as models for the glycans, to study processes such as cell wall biosynthesis, polysaccharide deposition, protein-carbohydrate interactions, and cell-cell adhesion. Synthetic chemists have focused on preparing such model compounds, as they can be produced in good quantities and with high purity. This Review contains an overview of those plant and algal polysaccharides that have been elucidated to date. The majority of the content is devoted to detailed summaries of the chemical syntheses of oligosaccharide fragments of cellulose, hemicellulose, pectin, and arabinogalactans, as well as glycans unique to algae. Representative synthetic routes within each class are discussed in detail, and the progress in carbohydrate chemistry over recent decades is highlighted.