The stereodirecting effect of the glycosyl C-5 substituent has been investigated in a series of d-pyranosyl thioglycoside donors and related to their preferred positions in the intermediate (3)H(4) and (4)H(3) half-chair oxacarbenium ions. Computational studies showed that an axially positioned C-5 carboxylate ester can stabilize the (3)H(4) half-chair oxacarbenium ion conformer by donating electron density from its carbonyl function into the electron-poor oxacarbenium ion functionality. A similar stabilization can be achieved by a C-5 benzyloxymethyl group, but the magnitude of this stabilization is significantly smaller than for the C-5 carboxylate ester. As a result, the preference of the C-5 benzyloxymethyl to occupy an axial position in the half-chair oxacarbenium ions is much reduced compared to the C-5 carboxylate ester. To minimize steric interactions, a C-5 methyl group prefers to adopt an equatorial position and therefore favors the (4)H(3) half-chair oxacarbenium ion. When all pyranosyl substituents occupy their favored position in one of the two intermediate half-chair oxacarbenium ions, highly stereoselective glycosylations can be achieved as revealed by the excellent beta-selectivity of mannuronate esters and alpha-selectivity of 6-deoxygulosides.
Self-adjuvanting
vaccines, wherein an antigenic
peptide is covalently bound to an immunostimulating agent, have been
shown to be promising tools for immunotherapy. Synthetic Toll-like
receptor (TLR) ligands are ideal adjuvants for covalent linking to
peptides or proteins. We here introduce a conjugation-ready TLR4 ligand,
CRX-527, a potent powerful lipid A analogue, in the generation of
novel conjugate-vaccine modalities. Effective chemistry has been developed
for the synthesis of the conjugation-ready ligand as well as the connection
of it to the peptide antigen. Different linker systems and connection
modes to a model peptide were explored, and
in vitro
evaluation of the conjugates showed them to be powerful immune-activating
agents, significantly more effective than the separate components.
Mounting the CRX-527 ligand at the N-terminus of the model peptide
antigen delivered a vaccine modality that proved to be potent in activation
of dendritic cells, in facilitating antigen presentation, and in initiating
specific CD8
+
T-cell-mediated killing of antigen-loaded
target cells
in vivo
. Synthetic TLR4 ligands thus
show great promise in potentiating the conjugate vaccine platform
for application in cancer vaccination.
A tandem ring‐closing metathesis cleavable linker system for solid‐phase oligosaccharide synthesis has been developed. The acid‐ and base‐stable linker can be readily cleaved with Grubbs second‐generation catalyst without the use of alkene additives to liberate the assembled oligosaccharides from the solid support. Application of the linker was shown in three solid‐phase oligosaccharide synthesis campaigns. Two frame‐shifted hyaluronic acid fragments were prepared, and we also report the synthesis of a trimeric β‐1,3‐glucan fragment, in which, next to the linker, our recently reported 4‐azido‐2,2‐dimethylbutanoyl (AzDMB) protective group was applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.