We review in this paper the development of Lagrange-Galerkin (LG) methods to integrate the incompressible Navier-Stokes equations (NSEs) for engineering applications. These methods were introduced in the computational fluid dynamics community in the early eighties of the past century, and at that time they were considered good methods for both their theoretical stability properties and the way of dealing with the nonlinear terms of the equations; however, the numerical experience gained with the application of LG methods to different problems has identified drawbacks of them, such as the calculation of specific integrals that arise in their formulation and the calculation of the flow trajectories, which somehow have hampered the applicability of LG methods. In this paper, we focus on these issues and summarize the convergence results of LG methods; furthermore, we shall briefly introduce a new stabilized LG method suitable for high Reynolds numbers.