Abstract. This paper deals with penalty function and multiplier methods for the solution of constrained nonconvex nonlinear programming problems. Starting from an idea introduced several years ago by Polak, we develop a class of implementable methods which, under suitable assumptions, produce a sequence of points converging to a strong local minimum for the problem, regardless of the location of the initial guess. In addition, for sequential minimization type multiplier methods, we make use of a rate of convergence result due to Bertsekas and Polyak, to develop a test for limiting the growth of the penalty parameter and thereby prevent ill-conditioning in the resulting sequence of unconstrained optimization problems.