2016
DOI: 10.1109/jstars.2016.2623567
|View full text |Cite
|
Sign up to set email alerts
|

A Semi-Supervised Hybrid Approach for Multitemporal Multi-Region Multisensor Landsat Data Classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0
3

Year Published

2017
2017
2023
2023

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 21 publications
(19 citation statements)
references
References 36 publications
0
7
0
3
Order By: Relevance
“…The accessibility of multitemporal satellite images could reduce the impact on classification caused by the complexity of surfaces and, to some Remote Sens. 2022, 14, 501 2 of 21 extent, the similarity between the spectrum of different vegetation [13]. However, part of the image is occluded by clouds and fog, resulting in missing data values [14,15], and the inconsistency of the input data dimensions makes it difficult to apply conventional classifiers, which need consistent data dimensions.…”
Section: Introductionmentioning
confidence: 99%
“…The accessibility of multitemporal satellite images could reduce the impact on classification caused by the complexity of surfaces and, to some Remote Sens. 2022, 14, 501 2 of 21 extent, the similarity between the spectrum of different vegetation [13]. However, part of the image is occluded by clouds and fog, resulting in missing data values [14,15], and the inconsistency of the input data dimensions makes it difficult to apply conventional classifiers, which need consistent data dimensions.…”
Section: Introductionmentioning
confidence: 99%
“…However, the developed model was only suitable for minimum class classification, not for maximum class classification, and the developed model showed poor performance in some conditions like cloud cover and regional fog error. Pencue-Fierro et al [36] presented a new hybrid framework for multi-region, multi-sensor and multi-temporal satellite image classification. In this study, land-cover classification was assessed for the Cauca river region, located in the south-west part of Colombia.…”
Section: Literature Surveymentioning
confidence: 99%
“…La percepción remota ha adquirido mayor importancia en los últimos años debido al surgimiento de algoritmos avanzados para la adquisición y procesamiento de imágenes [4], estos avances permiten generar herramientas de apoyo a la toma de decisiones, que incluyen el monitoreo operacional de los cultivos [5], lo cual se basa principalmente en índices de vegetación provenientes de datos ópticos, combinados con métricas agrometeorológicas como precipitación, temperatura, radiación solar y humedad del suelo [6]. Estas aplicaciones se han centrado en estudiar las interacciones sociedad naturaleza, analizando la relación existente entre el ser humano y la deforestación, la pérdida de la biodiversidad, el cambio climático [7] y otros procesos de transformación ocasionados por el desarrollo sociocultural y las actividades de apropiación y producción.…”
Section: Trabajos Relacionadosunclassified
“…En las regiones propensas a nubes como la CARC, es frecuente tener meses sin una escena Landsat sin nubosidad [7]. Las investigaciones recientes han aprovechado los sistemas de detección activa como el radar de apertura sintética (SAR), que además de su alta sensibilidad a las características superficiales y subsuperficiales funciona independientemente de la iluminación solar [17], lo que facilita cartografiar las coberturas presentes sobre las diferentes regiones.…”
Section: Trabajos Relacionadosunclassified
See 1 more Smart Citation