Azide and nitrimino functions are among the most energetic substituents that can be introduced to the skeleton to enhance the energetic properties of a compound. In this study, we report the successful synthesis of a compound that combines both, azide and nitrimino substituents directly attached to one tetrazole scaffold. 1-Nitrimino-5-azidotetrazole is prepared by nitration of 1-amino-5-azidotetrazole. Subsequent salination with ammonia and guanidinium carbonate yields two highly energetic derivatives. All energetic compounds, as well as the intermediate steps of an alternatively developed synthesis strategy, were analysed and characterized in detail. In addition to multinuclear NMR and IR spectroscopy, crystal structures of all key compounds were measured. The sensitivities (friction, impact, electrostatic discharge and thermal) were determined accordingly. In addition, the detonation parameters of all energetic substances were calculated with the EXPLO5 code, which was fed with the enthalpy of formation (atomization method based on CBS-4M) and the crystallographic densities.