This paper introduces a sharp-interface approach to simulating fluid-structure interaction (FSI) involving flexible bodies described by general nonlinear material models and across a broad range of mass density ratios. This new flexible-body immersed Lagrangian-Eulerian (ILE) scheme extends our prior work on integrating partitioned and immersed approaches to rigid-body FSI. Our numerical approach incorporates the geometrical and domain solution flexibility of the immersed boundary (IB) method with an accuracy comparable to body-fitted approaches that sharply resolve flows and stresses up to the fluid-structure interface. Unlike many IB methods, our ILE formulation uses distinct momentum equations for the fluid and solid subregions with a Dirichlet-Neumann coupling strategy that connects fluid and solid subproblems through simple interface conditions. To simplify the linear solvers needed by this formulation, we use a penalty method involving two representations of the fluid-structure interface, including one that moves with the fluid and another that moves with the immersed structure. These two representations are connected by approximate Lagrange multiplier forces that impose kinematic interface conditions. This approach also enables the use of multi-rate time stepping, which allows us to take different time step sizes for the fluid and structure subproblems. Our fluid solver relies on an immersed interface method (IIM) for discrete surfaces to impose stress jump conditions along complex interfaces while enabling the use of fast structured-grid solvers for the incompressible Navier-Stokes equations. The dynamics of the volumetric structural mesh are determined using a standard finite element approach to large-deformation nonlinear elasticity via a nearly incompressible solid mechanics formulation. This formulation also readily accommodates compressible structures for cases in which at least part of the solid boundary does not contact the incompressible fluid. Selected grid convergence studies demonstrate second-order convergence in volume conservation and in the pointwise discrepancies between corresponding positions of the two interface representations as well as between first and second-order convergence in the structural displacements. We additionally demonstrate second-order convergence for the time integration of the algorithm. To assess and validate the robustness and accuracy of the new algorithm,